
A Platform for Smart Book Search
using Structured Programming Approach

Lekiya Kasepa, Dr. Aravind Mohan
Department of Computer Science, McMurry University, Abilene, TX 79697

Abstract

Introduction

Methodolog
y

Experiments

Conclusion

In today's digital era, we have access to a lot of information
available on the web about books, but there are limitations to easily
and quickly finding the books that we need. Existing
recommendation systems are often inadequate, leading to
frustrating user experience when searching for the right books. This
makes internet users struggle to find the books that they want to
read, and authors get pushed under the radar because of the
limitations of the current recommendation systems. The Smart
Book Search system (SBS) addresses these challenges by allowing
users to effectively search for their book of choice by using various
methods, including title, author, keyword, or recommendation
search. By enhancing the user experience, the SBS also improves
author visibility. Utilizing our algorithm, the SBS can efficiently find
books that match user interest based on search history. Specifically,
it recommends the top five authors by analyzing the user's previous
searches and inputs. To validate the effectiveness of our system, we
conducted a series of experiments that demonstrated its accuracy in
finding and ranking books based on user search criteria.
Additionally, we used C, a structured programming language, to
efficiently implement our algorithm and develop our system based
on the dataset we collected from Kaggle (Goodreads).

The Smart Book Search system (SBS) was implemented in C and uses three CSV files: Books.csv (Table 1) containing titles,
authors, and page counts, Users.csv with user profile like username, password and full name, and History.csv (Table 2),
which stores user search activity. First, users are prompted to login using their username and password. After a successful
log in, users are later prompted to select a search type (choice) which can either be title, author, keyword, or page count,
and enter a value afterwards. The tool then scans the Books.csv for matches, displays the matched results, and stores them
in the History.csv for future recommendations. For example, when Mark101 searched for keyword atlas, all books related to
the keyword were retrieved from the books file (Table 1) and later shown under recommendations (Table 3). The SBS
algorithm (Table 4) was implemented within our tool using C Programming language. Our algorithm first accepts the User
Profile, Search criteria (Choice), Books, and Search History as input. Next, the algorithm performs either search by attribute
or recommendation to generate the result R which is a set of tuples that includes the titles and author names.

Table 2: User Search History

User Id Value Attribute

Chris10101 Layer Cake Title

Chris10101 943 Page Count

Luke608 John McPhee Author

Luke608 We the Living Title

Mark101 Atlas Keyword

Mark 101 Nora Roberts Author

Table 1: Books

Title Author Page Count

Layer Cake J.J Connolly 344

Basin and Range John McPhee 240

Atlas David Mitchell 529

Atlas Shrugged Leonard Peikoff 1168

We the Living Ayn Rand 464

Angels Fall Nora Roberts 391

Absolute C++ Walter J. Savitch 943

Valley of Silence Nora Roberts 318

Table 3: Recommendations

User Id Title Author

Chris10101 Layer Cake J.J. Connolly

Chris10101 Absolute C++ Walter J. Savitch

Luke608 Basin and Range John McPhee

Luke608 We the Living Ayn Rand

Mark101 Atlas David Mitchell

Mark101 Atlas Shrugged Leonard Peikoff

Mark101 Angels Fall Nora Roberts

Mark101 Valley of Silence Nora Roberts

Table 4: Smart Book Search Algorithm

SBS (User Profile P, Choice C, Books B, Search History S

Result, R <Title, Author> = empty

Status = Validate(P)

If (Status == Success)

 Switch (C)

 Case Title, Author, PageCount, Keyword:

 prompt(searchValue)

 While (B.Item != NULL)

 book = B.nextItem()

 If (book.getAttribute(C) == searchValue)

 R.add(book.title, book.author)

 S.add(R)

 End If

 End While

 Case Recommendation:

 Authors = S.getAuthors(P)

 For author in Authors

 R.add(B.getTitles(author), author)

 End For

 End Switch

End If

return R

To help visualize the efficiency of the SBS tool, we used three charts to know
the time, frequency and number of books the tool can recommend to users
based of their search history. Figure 1 shows that as the number of books
increases, the average response time rises, particularly for keyword and page
count searches, while author or title searches remain fast. Figure 2 indicates
that as users search more, recommendations for top authors increases, but
this varies among users due to personal preferences. Figure 3 reveals that
more searches lead to an increase in books recommended, that is more
relevant to the users. Overall, our system increases the response time and
enhance the book recommendation process.

Figure 1: Average Response Time Distribution

Av
g.

 R
es

po
ns

e
Ti

m
e

(s
ec

)

0
100
200
300
400

Number of Books
0 2500 5000 7500 10000

Title Author Page Count Keyword

Figure 2: Total Frequency of 5 Recommended Authors

To
ta

l F
re

q.

of
 A

ut
ho

rs

0
23
45
68
90

Number of Searches
0 250 500 750 1000

Mark101 Langson1 Milly52 Jordan67
Daniel100

Figure 3: Total No. Titles of Books Recommended

To
ta

l N
o.

 o
f

Ti
tle

s o
f

Bo
ok

s
Re

co
m

m
en

d
ed

0
100
200
300
400

Number of Searches
0 250 500 750 1000

Mark101 Langson1 Milly52 Jordan67
Daniel100

The Smart Book Search system improves the book search experience of users
by accurately finding and ranking books based on user search criteria and user
interest. We implemented our system and tested it with multiple use cases to
validate that the tool can both successfully search using different attributes
like title, author, page count, and keywords, and identify the top five authors
and recommend books that are relevant to the user and help the users
discover more books they might be interested in. We conducted a series of
experiments to show that our tool can search and recommend books
efficiently and accurately.

Reading plays a big role in expanding user knowledge and
improving literacy. Even though the internet provides access to a
vast digital library of books, finding the right one can still be a
tough task for many readers. If a reader keeps getting the wrong
suggestions every time they search for books, it might push them
towards losing interest in reading, which is a disadvantage for both
readers and authors. Popular platforms like Goodreads, Library
Thing, and Book Browse try to help users search for books, but they
often fall short. Many of these sites have limited search options or
only provide basic recommendations that don’t connect to what
users want to read. This can lead to frustration, as users may end
up seeing lists of books that are not related to their interests. For
instance, if someone is looking for a fantasy novel but ends up
receiving suggestions for unrelated genres, the experience can be
disappointing. On top of that, many systems don’t keep track of the
books a user has previously searched for, so they can’t provide
better recommendations based on past choices. The Smart Book
Search system (SBS) aims to address these issues by offering a
more user-friendly way to discover books. With SBS, readers can
search using keywords, author names, or even partial titles, making
it much easier to find what they’re looking for. For example, if a
student wants to find a history book titled, American History by
Alan Brinkley, they can easily search using the title or just keywords
like “American” and “History.” The system quickly provides the right
book without dragging the user through a long process.
Additionally, SBS lets users find other books by the same author
with just a simple search for the author’s name. This means that if
the student is interested in more works by Alan Brinkley, they will
get a list right away. We implemented the SBS system using C, a
structured programming language and conducted experiments to
verify the efficiency and accuracy of the tool.

