A Platform for Smart Book Search

using Structured Programming Approach

Lekiya Kasepa, Dr. Aravind Mohan
Department of Computer Science, McMurry University, Abilene, TX 79697

MCMURRY UNIVERSITY MCMURRY UNIVERSITY

Abstract Methodolog Experiments

In today's digital era, we have access to a lot of information
available on the web about books, but there are limitations to easily
and quickly finding the books that we need. Existing
recommendation systems are often inadequate, leading to
frustrating user experience when searching for the right books. This
makes internet users struggle to find the books that they want to
read, and authors get pushed under the radar because of the
limitations of the current recommendation systems. The Smart

The Smart Book Search system (SBS) was implemented in C and uses three CSV files: Books.csv (Table 1) containing titles,
authors, and page counts, Users.csv with user profile like name, password and full name, and History.csv (Table 2),
which stores user search activity. First, users are prompted Mgin using their username and password. After a successful the time, frequency and number of books the tool can recommend to users
log in, users are later prompted to select a search type (choice) which can either be title, author, keyword, or page count, based of their search history. Figure 1 shows that as the number of books
and enter a value afterwards. The tool then scans the Books.csv for matches, displays the matched results, and stores them increases, the average response time rises, particularly for keyword and page
in the History.csv for future recommendations. For example, when Mark101 searched for keyword atlas, all books related to count searches, while author or title searches remain fast. Figure 2 indicates
the keyword were retrieved from the books file (Table 1) and later shown under recommendations (Table 3). The SBS
algorithm (Table 4) was implemented within our tool using C Programming language. Our algorithm first accepts the User
Book Search system (SBS) addresses these challenges by allowing Profile, Search criteria (Choice), Books, and Search History as input. Next, the algorithm performs either search by attribute

VSRS e eﬁfectlveuly see?rch for their book of choice by using variots or recommendation to generate the result R which is a set of tuples that includes the titles and author names. . .
methods, including title, author, keyword, or recommendation relevant to the users. Overall, our system increases the response time and

search. By enhancing the user experience, the SBS also improves Table 1: Books Table 2: User Search History enhance the book recommendation process.
author visibility. Utilizing our algorithm, the SBS can efficiently find
books that match user interest based on search history. Specifically, Title Author Page Count User Id Value Attribute Figure 1: Average Response Time Distribution
it recommends the top five authors by analyzing the user's previous
searches and inputs. To validate the effectiveness of our system, we Layer Cake J.J Connolly 344
conducted a series of experiments that demonstrated its accuracy in
finding and ranking books based on user search criteria. Basin and Range John McPhee 240
Additionally, we used C, a structured programming language, to Luke608 John McPhee Author
efficiently implement our algorithm and develop our system based Atlas David Mitchell 579 —

on the dataset we collected from Kaggle (Goodreads). Luke608 We the Living Title 2500 5000 7500 10000

To help visualize the efficiency of the SBS tool, we used three charts to know

that as users search more, recommendations for top authors increases, but
this varies among users due to personal preferences. Figure 3 reveals that
more searches lead to an increase in books recommended, that is more

D
-
o

Chris10101 Layer Cake Title

W
-
-

Chris10101 943 Page Count

=
-
o

Avg. Response
Time (sec)
N
o
o

o

Atlas Shrugged Leonard Peikoff 1168 Tarki01 ATas ETTSES Number of Books

m _ — Title — Author — Page Count — Keyword
I ntrOd u Ct I O n We the Living Ayn Rand 464 Mark 101 Nora Roberts Author _
Figure 2: Total Frequency of 5 Recommended Authors

Reading plays a big role in expanding user knowledge and Angels Fall Nora Roberts 391
improving literacy. Even though the internet provides access to a
vast digital library of books, finding the right one can still be a Absolute C++ Walter J. Savitch 943 SBS (User Profile P, Choice C, Books B, Search History S
tough task for many readers. If a reader keeps getting the wrong
suggestions every time they search for books, it might push them Valley of Silence Nora Roberts 318
towards losing interest in reading, which is a disadvantage for both
readers and authors. Popular platforms like Goodreads, Library If (Status == Success) Number of Searches
Thing, and Book Browse try to help users search for books, but they : . . VT -

often fall short. Many of these sites have limited search options or Table 3: Recommendations switch (C) _ B/Iaar:iggéo -angsont Milly>2 Jordant?
only provide basic recommendations that don’t connect to what Case Title, Author, PageCount, Keyword:
users want to read. This can lead to frustration, as users may end User Id Title Author prompt(searchValue) Figure 3: Total No. Titles of Books Recommended

up seeing lists of books that are not related to their interests. For

instance, if someone is looking for a fantasy novel but ends up
250 500 750

O
o

Table 4: Smart Book Search Algorithm

o))
(00)

of Authors
N D
wW OO

Total Freq.

Result, R <Title, Author> = empty

o

Status = Validate(P) 250 500 750

While (B.ltem != NULL)

Chris10101 Layer Cake J.J. Connolly

receiving suggestions for unrelated genres, the experience can be book = B.nextltem()

disappointing. On top of that, many systems don’t keep track of the If (book.getAttribute(C) == searchValue)
books a user has previously searched for, so they can’t provide Chris10101 Absolute C++ Walter J. Savitch R.add(booktitle, book.author)
better recommendations based on past choices. The Smart Book ' B '
Search system (SBS) aims to address these issues by offering a [UkeB6083 Basin and Range Tohn McPhee S.add(R) \
more user-friendly way to discover books. With SBS, readers can End If umber of Searches

search using keywords, author names, or even partial titles, making _ — Mark101 — Llangsonl — Milly52 — Jordan67
it much easier to find what they’re looking for. For example, if a Luke608 We the Living Ayn Rand End While

— Daniell00
|
student wants to find a history book titled, American History by Case Recommendation: CO n CI u S I O n

Alan Brinkley, they can easily search using the title or just keywords Mark101 Atlas David Mitchell Authors = S.getAuthors(P)
like “American” and “History.” The system quickly provides the right ' The Smart Book Search system improves the book search experience of users

book without dragging the user through a long process. . For author in Authors by accurately finding and ranking books based on user search criteria and user
Additionally, SBS lets users find other books by the same author Mark101 Atlas Shrugged Leonard Peikoff R.add(B.getTitles(author), author) interest. We implemented our system and tested it with multiple use cases to

with just a simple search for the author’s name. This means that if cnd F validate that the tool can both successfully search using different attributes
nd For

the student is interested in more works by Alan Brinkley, they will Mark101 Angels Fall Nora Roberts like title, author, page count, and keywords, and identify the top five authors
get a list right away. We implemented the SBS system using C, a End Switch and recommend books that are relevant to the user and help the users

End If discover more books they might be interested in. We conducted a series of
experiments to show that our tool can search and recommend books
efficiently and accurately.

Total No. of
Titles of
Books
Recommend

structured programming language and conducted experiments to
verify the efficiency and accuracy of the tool.

Mark101 Valley of Silence Nora Roberts
return R

